Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
F1(X) -> G1(X)
ACTIVATE1(n__f1(X)) -> F1(X)
G1(s1(X)) -> G1(X)

The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
F1(X) -> G1(X)
ACTIVATE1(n__f1(X)) -> F1(X)
G1(s1(X)) -> G1(X)

The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPAfsSolverProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

G1(s1(X)) -> G1(X)

The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

G1(s1(X)) -> G1(X)
Used argument filtering: G1(x1)  =  x1
s1(x1)  =  s1(x1)
Used ordering: Quasi Precedence: trivial


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPAfsSolverProof

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))

The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.

SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
Used argument filtering: SEL2(x1, x2)  =  x1
s1(x1)  =  s1(x1)
activate1(x1)  =  x1
n__f1(x1)  =  n__f
f1(x1)  =  f
cons2(x1, x2)  =  cons
g1(x1)  =  g1(x1)
0  =  0
Used ordering: Quasi Precedence: [n__f, f] > cons g_1 > s_1


↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPAfsSolverProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f1(X) -> cons2(X, n__f1(g1(X)))
g1(0) -> s1(0)
g1(s1(X)) -> s1(s1(g1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
f1(X) -> n__f1(X)
activate1(n__f1(X)) -> f1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.